

Best Buy Corporate Building D (4) <u>Richfield, MN</u>

Technical Assignment II

Jon Aberts Structural Option Professor Boothby

October 24th, 2008

Executive Summary:

This report is an analysis of possible alternate floor systems for Best Buy Corporate Building D found in Richfield, MN. After analyzing the existing system, feasible alternate systems were chosen and considered for the building's floor system. Advantages and disadvantages were derived and studied to determine if each system was worth further investigation.

Existing Floor System: Composite Steel Beam

Advantages of the system are: can be quickly erected, generally low cost, floor depth is comparatively, system is lightweight, smaller column sizes, smaller foundation.

Disadvantage of the system is: requires fireproofing to meet the 2 hour fire-rating necessary.

Floor System #1: One-Way Concrete Slab with Beams

Advantages of the system are: overall depth is decreased by 3.75" from the original system, no spray on fireproofing required.

Disadvantages of the system are: take longer to construct, overall weight in this system is more, increase in column size, increase in foundation size.

Floor System #2: Pre-stressed Pre-cast Concrete Slab

Advantages of the system are: faster to erect, no fireproofing required, removal of one row of columns from the length of the building.

Disadvantages of the system are: overall weight in this system is, increase in column and foundation size, depth of the system is greatly increased, reduction in bay size along the length of the building.

Floor System #3: Post-tensioned Concrete Slab

Advantages of the system are: depth is greatly decreased by 8.75" from the original system, one less row of columns along the width, no fireproofing.

Disadvantages of the system are: more time to erect, overall weight in this system is more than the existing system, column size will increase, foundation size will increase.

General Information:

The Best Buy corporate campus consists of four buildings connected by a central hub. This report focuses on building number four, which is a six story braced frame, steel system. The 304,610 square foot building consists of slab on grade construction with wide flange steel columns supported on concrete piers. Lateral loads are supported by a braced frame system. The exterior of the building consists of an architectural precast curtain wall with integrated ribbon windows. Considering the large amounts of integrated technologies required by Best Buy, there are no other major dead or live loads other than those listed in the provided drawings. The occupancy of the building, as expected, is primarily for office use.

Dead Load: Finishes:

25^{psf}

Live Load: Main Floor:

100^{psf}

Existing System: Composite Steel Beam

The floor system Building D utilizes a composite beam floor framing system. The overall slab is 6¼" using 3" 20 gage composite deck and 3¼" lightweight concrete covering. The first floor uses [#]4 rebar at 18" on center for concrete reinforcing while the remaining floors use 6x6-W2.1xW2.1 welded wire frame. Each internal bay has a typical size of 30'x30' and external bays are typically 30'x42'8". The internal beams are typically W16*26 while the typical external beam is W18*40. Finally, the typical internal girder size is W21*50 and external is W18*35. Material strength is given as 3500 psi for the concrete and A992 50^{ksi} steel for the beams and girders. Spray on fireproofing was used to meet the fire rating required for the building. The floor framing system along with a typical interior bay (shown in blue and rotated 90 degrees) is shown below.

Some of the inherent advantages of the composite beam are that it can be quickly erected and at a generally low cost. Another advantage of the existing system is that the floor depth is comparatively shallow and can accommodate most building height restrictions. The structure for this system is lightweight, allowing smaller column sizes as well as a smaller foundation. One small disadvantage of the system is that it requires fireproofing to meet the 2 hour fire-rating necessary.

Alternate Systems:

System #1: One-Way Concrete Slab with Joists

The first alternate system chosen to analyze was a one-way concrete slab with joists. The 2002 CRSI Handbook tables were used to size the joists. The total load calculated for the system was 190^{psf} over a span of 29'. Using page 8-30 from CRSI, a design of 16" deep ribs with a 4.5" top slab was used resulting in a total depth of 20.5". The system would contain 30" forms with 6" ribs at 36" center to center for the interior span. The reinforcement for the system was designed as [#]5 at 9" on center for the top bars and [#]6 and [#]7 bottom bars. The total weight of the system is calculated to be 87.3^{psf}. A typical bay is shown below.

One of the first advantages to this system is that the overall depth is decreased by 3.75" from the original system, so there would be more room for mechanical and electrical systems. There would also not be any spray on fireproofing required with this system. In terms of building time, this system would likely take longer than the existing system to construct. Another issue to consider is that the overall weight in this system is more than the existing system. This could cause an increase in column size as well as in the foundation, which must be considered.

System #2: Pre-stressed Pre-cast Concrete Slab

The second alternate system chosen to analyze was a pre-stressed pre-cast concrete slab. Charts from Nitterhouse Concrete Products were used to size the bays. The total load calculated for the system was 190^{psf} over a span of 57'6". Using these charts, a 34"x12' double tee was selected. The system requires 18 0.6" diameter strands draped through the section. A typical bay is shown below.

The largest advantage to this system is the speed at which it can be erected. Similar to the one-way slab, there would also not be any spray on fireproofing required with this system. This design also allowed for the removal of one row of columns from the length of the building. Again, the overall weight in this system is more than the existing system, and could cause an increase in column and foundation size. The overall depth of the system is greatly increased, therefore either reducing floor height or increasing building height. The biggest disadvantage is the reduction in bay size along the length of the building. This really makes the system unfeasible.

System #3: Post-tensioned Concrete Slab

The last alternate system selected was a post-tensioned concrete slab. This design allowed for a 15.5" slab spanning a bay size of 57'6"x30'. Using 35^k tensioning and a minimum 6.75" eccentricity, 68 strands are needed along the 30' span. This requires a minimum spacing of 5.3" between strands with is larger than the minimum 2" recommended. No post-tensioning was needed for the short span. A typical bay is shown below.

Some of the advantages to this system are that the overall depth is greatly decreased by 8.75" from the original system, and there is one less row of columns along the width. Even with this reduction of columns in the width, there is no sacrifice in the length as the column spacing stays the same. Once again, there would not be any spray on fireproofing required with this system. This system will however take more time to erect and the overall weight in this system is more than the existing system. Lateral bracing will also be affected as the braced frame is no longer usable. The column size as well as in the foundation size will also increase.

Conclusions:

Existing System: Composite Steel Beam <u>Advantages</u>: Reduced time to erect Large bay sizes Relatively light weight system Lower cost overall Shallow floor <u>Disadvantages</u>: Fireproofing required System #1: One-Way Concrete Slab with Joists

<u>Advantages</u>: No fireproofing Reduced floor depth <u>Disadvantages</u>: Increased system weight Smaller bays Longer to construct Increased column sizes

System #2: Pre-stressed Pre-cast Concrete Slab <u>Advantages</u>: Much faster to erect No fireproofing Removal of a column row <u>Disadvantages</u>: Heavier system More expensive Deeper floor system More columns along length of building

System #3: Post-tensioned Concrete Slab <u>Advantages</u>: No fireproofing Removal of column row Greatly decreased floor depth <u>Disadvantages</u>: Heavier system Increased time to erect More expensive

Appendix

Existing Floor System: Composite Steel Beam

Metal Deck

Minimum as per code: 3" 20 gage United Steel Deck Manual: Try 3" 20 gage Maximum unshored span = 11.43'>10' Slab depth = $6^{1}/_{4}$ " Maximum load = 280^{psf}

Beam A: 30' span

Dead Load = 70^{psf}	Live Load = 100^{psf}
Load factors = $1.2(70) + 1.6(1)$	$00) = 244^{\text{psf}}$
$P_u = 244^{psf}$	$w_u = 10(244) = 2.44^{klf}$
$F'_c = 4^{ksi}$	$f_y = 60^{ksi}$
$M_u = w_u l^2 / 8 = (2.44 * 30^2) / 8 =$	274.5 ^{ft-k}
Assume a = 1"	$b_{eff} = \min [(l_n = 120"), (30*12/4=90")]$
$y_2 = 6 - a/2 = 5.5$ "	
Using LRFD table 3-19 use V	$W14*38 \to \Phi Mp = 231^{\text{ft-k}}$
Assuming PNA = 7 (worst ca	use) -> $^{\phi}M_p = 339^{\text{ft-k}}, \Sigma Q_n = 140^k$
$\sum Q_n = .85 f_c ba \rightarrow a = \sum Q_n / .8$	$5f'_{c}b = 140/.85*4*90 = .460$
$y_2 = 646/2 = 5.77$ "	$\Phi Mp = 341.5^{\text{ft-k}}$
$\sum Q_n$ /shear stud = 140/9 = 15.	56 -> 32 shear studs
Beam design: W14*38 with 3	32 shear studs

Beam B: 42'6" span

Dead Load = 70^{psf} Live Load = 100^{psf} Load factors = $1.2(70)+1.6(100) = 244^{\text{psf}}$ $P_{u} = 244^{psf}$ $w_u = 10(244) = 2.44^{klf}$ $F'_c = 4^{ksi}$ $f_v = 60^{ksi}$ $M_u = w_u l^2 / 8 = (2.44 * 42.5^2) / 8 = 550.9^{ft-k}$ Assume a = 1" $b_{eff} = \min [(1_n = 120^{\circ}), (42.5 \times 12/4 = 127^{\circ})]$ $y_2 = 6 - a/2 = 5.5$ " Using LRFD table 3-19 use W18*55 -> Φ Mp = 420^{ft-k} Assuming PNA = 7 (worst case) -> ${}^{\phi}M_{p} = 601^{\text{ft-k}}$, $\sum Q_{n} = 202^{k}$ $\sum Q_n = .85f'_c ba \rightarrow a = \sum Q_n / .85f'_c b = 202 / .85*4*120 = .495$ $y_2 = 6 - .495/2 = 5.75$ " $^{\Phi}Mp = 604.5^{\text{ft-k}}$ $\sum Q_n$ /shear stud = 202/9 = 22.44 -> 46 shear studs

Beam design: W18*55 with 46 shear studs

USD

Faculty Advisor: Professor Boothby Structural Option

	Slab Depth	¢Mn in.k	9.00	9.50	10.00	L, 10.50	Unifo	m Live	Loads	, psf * 12.50	13.00	13.50	14.00	14.50	15.00		LRF
22 gage	5.50 6.00 6.25 6.50 7.00 7.25 7.50	52.80 59.89 63.43 66.97 74.05 77.59 81.13	240 275 290 305 340 355 375	215 245 255 270 300 315 330	190 215 230 240 270 280 295	170 195 205 215 240 250 260	150 175 185 195 215 225 235	135 155 165 175 190 200 210	125 140 150 155 175 180 190	110 125 135 140 155 165 170	100 115 120 130 140 150 155	90 105 110 115 130 135 140	80 95 100 105 115 120 130	75 85 90 95 105 110 115	70 75 80 85 95 100 105		STUD/FT.
) gage	8,00 5.50 6,00 6,25 6,50 7,00 7,25	88.22 62.81 71.37 75.65 79.92 88.48 92.76	400 295 335 355 375 400	360 260 295 315 330 365 295	320 230 265 280 295 330 245	285 205 235 250 265 295	255 185 210 225 240 265 275	230 170 190 205 215 240	205 150 175 185 195 215 225	185 135 155 165 175 195	170 125 140 150 160 175	155 115 130 135 145 160	140 105 120 125 130 145	125 95 110 115 120 135	115 85 100 105 110 125 120	* The Un	IO STUDS
age 2(7.50 8.00 5.50 6.00 6.25 6.50	92.76 97.03 105.59 72.04 82.00 86.97 91.95	400 400 340 390 400	385 400 400 300 345 365 385	345 360 390 270 305 325 345	310 320 350 240 275 295 310	275 290 315 220 250 265 280	250 260 285 195 225 240 250	225 235 255 180 205 215 220	205 215 235 160 185 195 205	185 195 210 145 170 180 190	170 175 195 135 135 155 165 170	155 160 175 125 140 150	140 150 160 110 130 135 145	130 135 145 105 120 125 135	Althoug tions th will con equatio	D equation $\phi M_n = (1.6L + 1.2D)^n$ h there are other load combina at may require investigation, ti rrol most of the time. The n assumes there is no negative
e 19 g	7.00 7.25 7.50 8.00 5.50	101.91 106.89 111.87 121.83 80.96 92.32	400 400 400 400 385 400	400 400 400 400 345 390	385 400 400 400 305 350	345 360 380 400 275 315	310 325 340 370 250 285	280 295 310 335 225 255	255 265 280 305 205 235	230 240 255 275 185 210	210 220 230 250 170	190 200 210 230 155 175	175 185 195 210 140	160 170 175 195 130 150	145 155 160 175 120 135	bending and the single s shown; uniform	reinforcement over the beams refore each composite slab is a pan. Two sets of values are φM _{nf} is used to calculate the load when the full required
18 gag	6.25 6.50 7.00 7.25 7.50 8.00	98.00 103.68 115.04 120.72 126.40 137.76	400 400 400 400 400 400 400	400 400 400 400 400 400 400	300 370 395 400 400 400 400	335 355 395 400 400 400	200 300 320 355 370 390 400	275 290 320 335 355 385	245 260 290 305 320 350	225 240 265 280 290 320	205 220 240 255 265 290	190 200 220 235 245 265	170 180 205 215 225 245	160 165 185 195 205 225	145 155 170 180 190 205	number used to are pres can be studs is	of studs is present; φM _{no} is calculate the load when no stu- ent. A straight line interpolation done if the average number of between zero and the require
16 gage	5.50 6.00 6.25 6.50 7.00 7.25 7.50	80.96 92.32 98.00 103.68 115.04 120.72 126.40	385 400 400 400 400 400 400	345 390 400 400 400 400 400	305 350 370 395 400 400 400	275 315 335 355 395 400 400	250 285 300 320 355 370 390	225 255 275 290 320 335 355	205 235 245 260 290 305 320	185 210 225 240 265 280 290	170 195 205 220 240 255 265	155 175 190 200 220 235 245	140 160 170 180 205 215 225	130 150 160 165 185 195 205	120 135 145 155 170 180 190	number factored are che seldom load de	needed to develop the "full" moment. The tabulated loads cked for shear controlling (it does), and also limited to a liv lection of 1/360 of the span.
22 gage	8.00 5.50 6.00 6.25 6.50 7.00 7.25 7.50	137.76 35.57 40.92 43.68 46.49 52.24 55.17 59.14	400 155 175 190 200 230 240 255	400 135 155 165 175 200 210 225	400 120 135 145 155 175 185 200	400 105 120 130 140 155 165 175	400 90 105 115 125 140 145	385 80 95 100 110 125 130 140	350 75 85 90 95 110 115 125	320 65 75 80 85 100 105 110	290 60 65 70 75 90 95 100	265 50 60 65 70 80 85 80	245 45 55 60 70 75 80	225 40 45 50 55 65 65 70	205 35 40 45 50 55 60 65	An uppe applied been do large co Concer analysis	er limit of 400 psf has been to the tabulated loads. This has ne to guard against equating ncentrated to uniform loads. trated loads may require spec s and design to take care of
0 gage	8.00 5.50 6.00 6.25 6.50 7.00 7.25	64.15 42.29 48.61 51.89 55.23 62.07 65.57	280 185 215 230 245 280 295	250 165 190 205 215 245 260	220 145 170 180 195 220 230	195 130 150 160 170 195 205	175 115 135 145 155 175 185	155 105 120 130 135 155 165	140 90 105 115 120 140 145	125 80 95 105 110 125 130	110 75 85 90 100 110 120	100 65 75 85 90 100 105	90 60 70 75 80 90 95	80 55 60 65 70 80 85	70 50 55 60 65 75 80	servicib by simp On the combin compos calculat	ility requirements not covered ly using a uniform load value. other hand, for any load ation the values provided by the ite properties can be used in the inos.
gage 2	7.50 8.00 5.50 6.00 6.25 6.50 7.00	69.10 76.28 48.35 55.60 59.36 63.20 71.08	310 345 220 250 270 285 325	275 305 195 225 240 255 285	245 270 170 200 210 225 255	215 240 150 175 190 200 225	195 215 135 155 170 180 205	175 190 120 140 150 160 185	155 170 110 125 135 145 165	140 155 100 115 120 130 150	125 140 90 105 110 120 135	115 125 80 95 100 105 120	100 115 70 85 90 95 110	90 105 65 75 80 90 100	85 95 60 70 75 80 90	Welded amount If welde deduct	wire fabric in the required is assumed for the table value d wire fabric is not present, 10% from the listed loads.
age 19	7.25 7.50 8.00 5.50 6.00 6.25 6.50	75.10 79.17 87.46 54.28 62.43 66.67 70.99	345 360 400 250 285 305 325	305 320 355 220 255 270 290	270 285 315 195 225 240 260	240 255 280 175 200 215 230	215 230 255 155 180 195 205	195 205 225 140 160 175 185	175 185 205 125 145 155 165	155 165 185 115 130 140 150	140 150 165 105 120 130 135	130 135 150 95 110 115 125	115 125 135 85 100 105 115	105 110 125 75 90 95 105	95 100 115 70 80 85 95	Refer to use of th	the example problems for the ne tables.
je 18 g	7.00 7.25 7.50 8.00 5.50 6.00	79.88 84.42 89.03 98.39 54.28 62.43	370 390 400 400 250 285	325 345 365 400 220 255	290 310 325 360 195 225	260 275 290 325 175 200	235 245 260 290 155 180	210 225 235 260 140 160	190 200 210 235 125 145	170 180 190 215 115 130	155 165 175 195 105 120	140 150 160 175 95 110	130 135 145 160 85 100	115 125 130 145 75 90	105 115 120 135 70 80		
16 gag	6.25 6.50 7.00 7.25 7.50 8.00	66.67 70.99 79.88 84.42 89.03 98.39	305 325 370 390 400 400	270 290 325 345 365 400	240 260 290 310 325 360	215 230 260 275 290 325	195 205 235 245 260 290	175 185 210 225 235 260	155 165 190 200 210 235	140 150 170 180 190 215	130 135 155 165 175 195	115 125 140 150 160 175	105 115 130 135 145 160	95 105 115 125 130 145	85 95 105 115 120 135		

Floor System #1: One-Way Concrete Slab with Joists

Beam A (exterior): 30' span

Live Load = 100^{psf} Dead Load = 25^{psf} $w_u = 1.2(25) + 1.6(100) = 190^{psf}$ From CRSI joist supporting 190^{psf} spanning 30' 30" forms 6" ribs 16" rib depth 36" center to center distance 4.5" slab depth Reinforcement: $Top = {}^{\#}5 @ 9"$ Bottom = ${}^{\#}6. {}^{\#}7$ This will hold 222^{psf} Total Weight = $30*30*97 = 87.3^{k}$ Beam B (interior): 27'6" span Dead Load = 25^{psf} Live Load = 100^{psf} $w_u = 1.2(25) + 1.6(100) = 190^{psf}$ From CRSI joist supporting 190^{psf} spanning 28' 30" forms 6" ribs 16" rib depth 36" center to center distance 4.5" slab depth Reinforcement: $Top = {}^{\#}5 @ 11"$ Bottom = (2) #7 This will hold 225^{psf} Total Weight = $30*27.5*97 = 80.0^{k}$

Girders: 30' span

Using weight of exterior beams to size girders for uniformity.

 $w_u = 1.2(87.3+25)+1.6(100) = 294.76^{psf}$

 $W_u = 294.76*30 = 8.84^{klf}$

$$\begin{split} M_u &= (8.84^*302)/8 = 994.5^{ft\text{-k}} \\ F'_c &= 4^{ksi} \qquad f_y = 60^{ksi} \qquad \rho = .0124 \qquad d = 20.5\text{--}2.5 = 18^{\prime\prime} \\ Mu &\leq {}^{\phi}M_n = [{}^{\phi}\rho bd^2 f_y(1\text{-}.59\ \rho(f_y/f'_c))](1/12) \\ 994.5^*12 &= .9^*.0124^*bd^{2*}60^*(1\text{-}.59^*.0124^*(60/4)) \\ bd^2 &= 20019.5 \qquad d = 18^{\prime\prime} \qquad b = 61.78^{\prime\prime} \text{ -> } 66^{\prime\prime} \\ W_{uGIRDER} &= (1.2^*66^*30^*150)/144 = 2.48^{klf} \\ M_{uGIRDER} &= 994.5 + (2.48^*30^2)/8 = 1273.5^{ft\text{-k}} \end{split}$$

Steel Design:

$$Mu = {}^{\phi}A_{s}df_{y}(1-.59 \ \rho(f_{y}/f_{c})$$

$$1273.5 = [.9*A_{s}*18*60*(1-.59*.0124*(60/4))]/12$$

$$A_{s} = 17.86 \qquad Use: (8) {}^{\#}18$$

Deflection:

$$I = bh^{3}/12 = (66*18^{3})/12 = 32076 \text{ in}^{4}$$

$$w_{u} = ((8.84+2.48)/12)*1000 = 943.33^{\text{lb/in}}$$

$$\Delta \leq (30*12)/240 = 1.5^{\circ}$$

$$\Delta = (5w_{u}l^{4})/(384\text{EI}) = (5*943.33*30^{4})/(384*3.6\text{E}6*32076) = .000087^{\circ}$$

$$.000087^{\circ} \leq 1.5^{\circ}$$

Best Buy Corporate Building #4	ł
Richfield, MN	

Faculty Advisor: Professor Boothby
Structural Option

V JOISTS II) LE SPANS	FAC.	30 TORED)" Forr	ns + (BLE SI	5° Rib @ UPERIM	36" c POSEC	c, ⁽²⁾	(PSF)	f_{i}^{c}	= 4,0	00 psi 00 psi	STZ ONE-W/ MULTI	ANDARD AY JOIST PLE SPA	S S S	FAC	30 ORED	" Form	s + 7"	Rib @ 3 PERIMP	57" cc OSED	LOAD	(PSF)	3.4	= 4,0	00 psi 00 psi
			16. D	cep Rib	+ 4.5' Top	Slab = 2	0.5 " Tota	4 Depth									16" De	ap Rib +	4.5 * Top S	lab = 20	1.5° Tota	I Depth			
÷ 9 ≇	** ∞	# 5 10.5	ი გი	# G 10.5	End	# 0 7	# ²	8 €	# e	9 #0	, Int	10P BARS	Bize @	# 4 10	₩ 8.5	÷ ₽	ന്ന നൂ	% ₽	End	≉ o 4 o	Ω	₩5 9.5	% ₩ 80	9 £ 8 £	Int.
மம ** **	ы. Ф. Ф.	99 ##	9 Å # #	下下去去	Defi.	## 40	4 # #	5. 9. #	9 * 9 *	₩ 7 ₩ 7	Defi.	BOTTOM	**	お 学 が	ۍ د په په	\$ 9 * 8	# # - #	1 # 1 #	Span Defi.	# # 4 0	ທ ‡ †‡	* * 0	9 # # 9	8 # 7 4	Span Defi.
8	1.04	1.24	1.44	1.71	3	6	1.18	1.42	1.70	2.01	(3)	Steel (psf	6	8	1.00	1.20	1.41	1.63	(E)	.92	1.16	1.36	1.63	1.93	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	-	E	NHS CI	N				INTERN	OR SP/	3		CLEAR	SPAN			E	D SPA	-				INTERIO	DR SPA	z	
131	185	240	305	314	6.398	184	252	331	35.9*	4896	3, 038	1.6	.0	118	171	906	280	2.66+	6 576	1 023	326	212	106	400*	A 0.47
0 12	0 10	214	306	373	7.400	0 ja	225	500	412 338*	454* 346*	4.554		, þ	<u>°</u> 8	064	0 661	259	354 319	909°2	148 0 0	210	281	354	400- 485 382*	4.681
ං යු	0.5	0.051	247	338	, R516	141	0 100	0 000	373	423*	5 240	ġ	ĉ	0 6	0 0	100	0 66	0 000	0 750	0	0 90	0	0 000	441	000 0
0 0	0	0	0	306		-	0	0	339	395*		3	>	30	0	20	0	0	1010	0	<u>0</u>	20	0	96 10 10	000'0
80	10	20	0	32	9.752	0	8/1	243	307	306"	6.001	08	þ	80	112	155	207	280	10.023	010	164	227	580	340* 366	6.168
80	108	671 140	200	240	* 11.119	900	158	218	279	289*	6.842	5	ņ	89	89	136	185	235	11.428	20	- 14 0	203	263	321*	7.033
52 <	6	132	179	226	* 12.625	28.	, 1	197	254	273*	7.769	32	ŀ,	4	8	119	185	211	12.975	8	127	182	238	304*	7.985
- 40	1.0	9 1 1	9	205	14.278	0.00	124 0	177	530 C	322 258*	8.787	33	ņ.	0	0 8	0 20	147	190	14.675	0 19	° E	163	215	0 278	9.031
>	9 (j	° 0	143	185	16.089	98	0.00	150 0	200	244*	9.901	34	.o.		o ıg	08	30 0	0 171	16.536	0 55	0 16	145	0 1	253	10.176
	0 ig	0 88	127	167	18.067	0 7	0 %	142 0	0 0	270 231*	11.118	38	5		04	0 26	115 0	0 153	18 560	0 64	0 8	0 120	0	0 53	11 497
	-	0 ;	° ;	° ;	000	0	0	0	0	247					•	0	0	0	}	0	90	0	0	0	
	₽°	ęo	20	20	20.222	40	2g O	0	2/1	219*	12.445	8	þ			9 O	<u>8</u> 0	137	20.784		F 0	114	0 28	211	12.790
		-0 -0 -0	80	135	22.565		50	113	155	207	13.886	37	ņ			S c	88 0	122	23.191		20	100	142	192	14.272
		35	68	121	25.105		99	100	140	189	15.449	38	-0,			.4.	92	. 60 0	25.802		6	8	127	175	15.876
		, 1	9.6	90	27.853		200	° 8	126	172	17.141	39'	-0-			-	0 ig	o 9	28.627		0	0 20	10 0	159 0	17.617
		°	0 58	0 9	30,825		0 5	0	0 5	٥ţ	18 067		č				03	0 8	010 10			٥ţ	0	•	4
			30	30	770.00		0	- 0	20	<u>}</u> 0	10:201	40	è				5 O	φ 0 0	31.6/8			<u> </u>	000	144 10	19.49
ion p r sta of del	ropertie ndard sy flection	is, see T quare joi is not re	able 8- ist end: quired	1. s; seoal above	nd load is horizonal	for spe(line (thic	cial tape ckness 2	red jois	st ends. 8.5 for	end spa	08,	333 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	gross sec st load is fr mputation	tion pri or stan	operties dard sq ection i	, see Ta uare joi s not re	ble 8-1 st ends quired a	second bove h	l load is fo orizonal lir	or speci	ial tape kness	red jois ≥ ℓ _n /16	t ends.	end spre	'su
nidgir ear ca	ng joists spacity.	and tap	ered ei	nds. +C	Capacity a	tt elastic	: deflect	ion = 8,	<i>a</i> /360.			(4) Exc *Contro	'21 tor inte slusive of b blied by she	srior sp nidging ear car	ans). joists acitv.	and tap	ared en	ds. +Ca	nacity at	elestic	deflect	ion = f	/360		
В	OPERI	TIES FC	JR DE	SIGN	(CONC	RETE .	SS CF	SF) (4)						PRC	DERT	IES FC	PE DE	SIGN (CONCR	ETF 6	8 CF	(P) (45/			
	8					-						NEGATIVE	MOMENT									5			
14	3 G	32	58.	<u>1</u>		9 K	5.1	1.24	999	1.76		STEEL ARE STEEL % 0	A (SQ. IN.) INFORM	45.74	78. 25.2	5 g	1.27	1.43		8 5	1.04	1.21	1.43	1.71	
S.	37	ŧ	ŝ	3		35.	42	13	09	57.			(APERED)	8	1 8	3 4	66	9 <u>1</u> 8		9 6	60	49	9 B	99.	
191	19.3	208	2.91	289.1		19.3	19.2	19.2	19.1 260	19.1		EFF DEF	PTH, IN,	19.3	19.3	19.2	19.2	19.2		19.3	19.2	19.2	19.2	19.1	
			2	3		-	10.2	123	007	noc.		POSITIVE	MOMENT	01-1	991.	Ē.	272	244		851.	181.	214	.244	.277	
19 S	2 .75	88	1.04	1.20		10 G	.62	.75	88	1.04		STEEL ARE	A (SQ.IN.)	.62	.75	.98	1.04	1.20		ີ່	.62	.75	88.	1.04	
6	6	- 2	191	191		0.6	80. 0 0 1	101	101	101		STEP NOT	51 %	80,0	Ē	12	91 - F	1.0		20.0	60.	Ξ.	12	.15	
19	861. 8	230	265	302		140	168	199	230	265		Ent tver	PIH, IN.	18.2	180	208	19	13.1		19.2	15.2	19.1	1.51	19.1	
	_	_			_								(Dett.	-	2	22	2 J	114		121	50	5	007.	747	

CONCRETE REINFORCING STEEL INSTITUTE

Floor System #2: Pre-stressed Pre-cast Concrete Slab

Dead Load = 25^{psf} Live Load = 100^{psf} $w_u = 1.2(25)+1.6(100) = 190^{\text{psf}}$

- 7. Flexural capacity is based on stress/strain strand relationships.
- Maximum moment capacity is critical at midspan for parallel stands and is critical near 0.4 span for draped strands.

				Tab	le of	Safe	e Su	perin	npos	ed L	oads	(lbs	. per	sq. i	ft.)							
Castian	Ø M.										Spar	n in F	eet									
Section	(in. Kips)	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80	82	84	86	88	90	92
34 - 6.6 P	9,405	46	37	30			a.	No.		-				1			19		1		100	
34 - 8.6 P	12,117	78	67	58	49	42	35					1										
34 - 10.6 P	14,586	108	95	83	73	64	56	48	41	35		-	1									
34 - 12.6 P	16,796	134	120	106	95	84	74	66	58	50	44	38	32									
34 - 14.6 D	21,450	191	173	156	141	127	114	103	93	84	75	67	60	53	47	42	36	31	1	1.1	1	
34 - 16.6 D	24,293	225	204	185	168	152	138	126	114	104	94	85	77	69	62	56	50	44	39	34	30	
34 - 18.6 D	26,938	1		212	193	176	160	146	134	122	111	101	92	83	75	67	60	55	51	45	40	36

Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request.

2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17201-0813 717-267-4505 • FAX: 717-267-4518

Floor System #3: Post-tensioned Concrete Slab

$F'_c = 4^{ksi}$	2'x2' columns	
Column strip = $\frac{1}{2}$ sho	ort span = $30/2 = 15$ '	
Thickness of slab = spectrum $57.5(12)/45 =$	pan/depth ratio = 45 15.33 = 15.5" slab	
Dead Load = $150*(15)$	$(5.5/12) = 218.75^{\text{psf}}$	Live Load = 100^{psf}

N-S:

 $l_1 = 57.5, \qquad l_2 = 30, \qquad l_n = 55.5, \qquad w_o = 318.75^{psf}$

 $M_o = w_o l_2 l_n^2 / 8 = (.318*30*55.5^2) / 8 = 3681.75^{ft-k}$

End Span	Moment
Ext. Neg.	$.65Mo = 2393.2^{ft-k}$
Positive	$.35Mo = 1288.7^{ft-k}$
Int. Neg.	$.65Mo = 2393.2^{ft-k}$

 $S = bd^2/6 = (12*15.52)/6 = 480.5in^3$

$$f_{tmax} = 7.5 * sqrt(f'_c) = .474^{ksi}$$

 $A = 15.5(12) = 186in^2$

 $f_c = .6f_c^2 = 2.4^{ksi}$

 $e_{\min} = (15.5/2) - 1 = 6.75$ "

Support:

$$f_{tmax} = M_o/S - P_e/A - P_e e/S$$
 $f_c = -M_o/S - P_e/A + P_e e/S$

 $.474 = (2393.2(12))/(480.5*28.75) - P_e/(186*28.75) - (P_e*6.75)/(480.5*28.75)$

 $P_e = 2375.67^k$

$$-2.4 = -(2393.2(12))/13814.4 - P_e/5347.5 + (P_e*6.75)/13814.4$$

$$P_e = -1063.3^k$$

Mid-span:

$$\begin{split} f_{tmax} &= M_0/S - P_e/A - P_e e/S & f_c &= -M_0/S - P_e/A + P_e e/S \\ .474 &= (1288.7(12))/13814.4 - P_e/5347.5 - (P_e*6.75)/13814.4 \\ P_e &= 955^k \\ -2.4 &= -(1288.7(12))/13814.4 - P_e/5347.5 + (P_e*6.75)/13814.4 \\ P_e &= -4240.3^k \end{split}$$
 Post-tension:

 $P_{emin} = 2375.7^k$ $P_{ei} = 35^k$
 $P_e/P_{ei} =$ strands
 Strands = 2375.7/35 = 67.9

 68 strands for post-tension
 $P_e = 68*35 = 2380^k -> ok$

$$(30'(12))/68 = 5.3$$
 spacing

E-W:

$l_1 = 30'$	$l_2 = 57.5$	$l_n = 28'$	$w_0 = 318.75^{psf}$
$M_o = w_o l_2 l_n^2 / l_n^2 $	/8 = (.318*57.5	$(*28^2)/8 = 179$	1.9 ^{ft-k}
Int. Support 65% 1164 Mid-span 35% 627.2	.8 ^{ft-k}	C.S M.S C.S M.S	$(75\%) = 873.6^{\text{ft-k}}$ $(25\%) = 291.2^{\text{ft-k}}$ $(60\%) = 376.3^{\text{ft-k}}$ $(40\%) = 250.8^{\text{ft-k}}$
$S = bd^2/6 = ($	(12*15.52)/6 =	480.5in ³	
$f_{tmax} = 7.5 * sc$	$qrt(f_c) = .474^{kst}$	i	
A = 15.5(12)	$= 186in^2$		
$f_c = .6f_c^2 = 2$.4 ^{ksi}		
$e_{min} = (15.5/2)$	2)-1 = 6.75"		

Support:

$$\begin{split} f_{tmax} &= M_o/S - P_e/A - P_e e/S & f_c = -M_o/S - P_e/A + P_e e/S \\ .474 &= (873.6(12))/13814.4 - P_e/5347.5 - (P_e*6.75)/13814.4 \\ P_e &= -79.9^k \\ -2.4 &= -(873.6(12))/13814.4 - P_e/5347.5 + (P_e*6.75)/13814.4 \\ P_e &= -13398^k \\ Mid-span: \\ f_{tmax} &= M_o/S - P_e/A - P_e e/S & f_c &= -M_o/S - P_e/A + P_e e/S \\ .474 &= (376.3(12))/13814.4 - P_e/5347.5 - (P_e*6.75)/13814.4 \end{split}$$

$$P_e = -919.3^k$$

$$-2.4 = -(376.3(12))/13814.4 - P_e/5347.5 + (P_e*6.75)/13814.4$$

 $P_e = -14830.4^k$

No post-tensioning needed.